polar phases (Rogers, Cammarata) (193) 22

## SUBJECT INDEX

Acetazolamide

## Inhibitory effect of — on the active ATPase Deoxycholate stimulation of goldfish intesbicarbonate and chloride transport mechanisms across short-circuited turtle bladders tinal (sodium-potassium) — and its (Gonzalez) (193) 146 relation to digoxin binding (Ellory, Smith) Acetazolamide (193) 137 ATPase sensitive short-circuiting current Effect of dehydration, starvation and soversus mucosal bicarbonate concentration in turtle bladders (Gonzalez, Schilb) (193) dium deprivation on microsomal the kidney (Gutman, Beyth) (193) 475 419 α-Adrenergic inhibiton **ATPase** - of sodium transport: The interaction Molecular structure in phospholipid essenof vasopressin and cyclic AMP (Watlington) tial to active sodium-potassium-magnesiumdependent phosphatase of bovine cerebral (193) 394 cortex (Tanaka, Sakamoto) (193) 384 Adrenocorticotropin Effect of polypeptide hormones on lipid Bicarbonate monolayers. II. The effect of insulin analo-Accelerating effect of serosal --- on gues, vasopressin, oxytocin, thyrocalcitosodium transport in short-circuited turtle nin, —, and 3',5'-cyclic AMP on bladders (Gonzalez et al.) (193) 403 calcium uptake by monomolecular films of Bicarbonate monooctadecyl phosphate (Kafka, Pak) Acetazolamide-sensitive short-circuiting current versus ---- concentration in (193) 117 Amino acid structure turtle bladders (Gonzalez, Schilb) (193) 419 Bicarbonate and chloride transport Features of ——— enhancing or obstructing Inhibitory effect of acetazolamide on the cosubstrate reactivity of sodium in transport (Christensen et al.) (193) 228 active ----- mechanisms across shortcircuited turtle bladders (Gonzalez) (193) α-Aminoisobutyric acid transport Sodium and potassium electrochemical potential gradients and the --- in Bilayer membranes Ehrlich ascites tumour cells (Jacquez, Tetraphenylborate conductance through lipid ---- (Le Blanc, Jr.) (193) 350 Schafer) (193) 368 3',5'-cyclic AMP Bladders α-Adrenergic inhibition of sodium transport: Accelerating effect of serosal bicarbonate on sodium transport in short-circuited turtle The interaction of vasopressin and -(Watlington) (193) 394 - (Gonzalez et al.) (193) 403 3',5'-cyclic AMP Bladders Effect of polypeptide hormones on lipid Acetazolamide-sensitive short-circuiting monolayers. II. The effect of insulin analocurrent versus bicarbonate concentration in turtle ---- (Gonzalez, Schilb) (193) 419 gues, vasopressin, oxytocin, thyrocalcitonin, adrenocorticotropin, and -Bladder calcium uptake by monomolecular films of Effect of propionate and other organic monooctadecyl phosphate (Kafka, Pak) anions on sodium transport across toad (193) 117 - (Singer et al.) (193) 430 Bladders Anaesthetics Action of — on phospholipid mem-Inhibitory effect of acetazolamide on the branes (Johnson, Bangham) (193) 92 active bicarbonate and chloride transport mechanism across short-circuited turtle Anaesthetic Displacement of membrane calcium by a – (Gonzalez) (193) 146 - (chlorpromazine) (Kwant, Bladder Mechanism of the "antidiuretic hormone-Seeman) (193) 338 Antidiuretic hormone-like action like" action of hypertonic media on the Mechanism of the ---- of hypertonic frog urinary ——— (Ripoche et al.) (193) media on the frog urinary bladder (Ripoche et al.) (193) 231 Brush border Studies on the organization of the — Aromatic compounds intestinal epithelial cells. VI. Glucose Molecular orbital description of the partibinding to isolated intestinal brush borders - between polar and nontioning of -

and their subfractions (Eichholz et al.) (193)

investigate disordering of membranes dur-

ing preparation for -----. I. Osmium

tase, ——— and related enzymes. Relation-

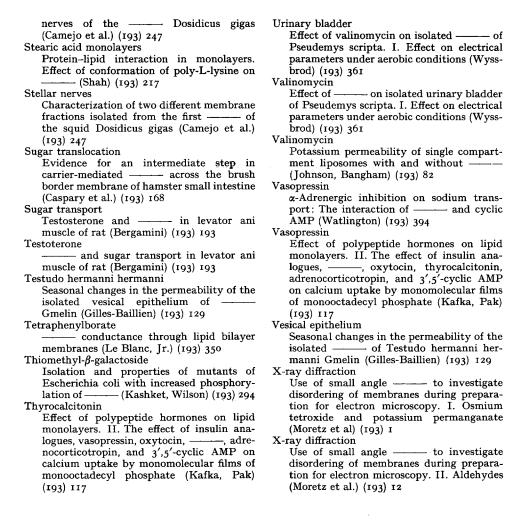
tetroxide and potassium permanganate 179 (Moretz et al.) (193) 1 Brush border membrane Evidence for an intermediate step in Electron microscopy carrier-mediated sugar translocation across Use of small angle X-ray diffraction to the --- of hamster small intestine investigate disordering of membranes dur-(Caspary et al.) (193) 168 ing preparation for ——. II. Aldehydes Calcium uptake (Moretz et al.) (193) 12 Effect of polypeptide hormones on lipid Electro-osmosis monolayers. II. The effect of insulin in Chara corallina and Nitella analogues, vasopressin, oxytocin, thyrocaltranslucens cells (Barry, Hope) (193) 124 citonin, adrenocorticotropin, and 3',5'-Endoplasmic reticulum cyclic AMP ---- by monomolecular Gel filtration of marker enzymes of plasma films of monooctadecyl phosphate (Kafka, membrane and ----- from rat liver (Nakai et al.) (193) 468 Pak) (193) 117 Carnitine Erythrocytes lysis Erythrocytes lysis by long-chain acyl esters - by long-chain acyl esters of carnitine (Cho, Proulx) (193) 30 of ——— (Cho, Proulx) (193) 30 Erythrocyte membranes Cerebral cortex Molecular structure in phospholipid essen-Electron microscope study of the disruption tial to activate sodium-potassium-magneof ---- (Haggis) (193) 237 sium-dependent ATPase and potassium-Erythrocyte membrane magnesium-dependent phosphatase of bo-Fluorescence changes of ethidium bromide vine — (Tanaka, Sakamoto) (193) 384 on binding to ---- and mitochondrial Chara corallina membrane (Gitler et al.) (193) 478 Electro-osmosis in ——— and Nitella Erythrocyte membrane translucens cells (Barry, Hope) (193) 124 Human ——. Uptake of progesterone and Chloride and bicarbonate transport chemical alterations (DeVenuto et al.) (193) Inhibitory effect of acetazolamide on the 36 active ---- mechanisms across short-Escherichia coli circuited turtle bladders (Gonzalez) (193) Intracellular pH of ——— (Kashket, 146 Wong) (193) 212 Chlorpromazine Escherichia coli Isolation and properties of mutants of Displacement of membrane calcium by a - with increased phosphorylation of local anaesthetic (------) (Kwant, Seethiomethyl-\beta-galactoside (Kashket, Wilman) (193) 338 Cholesterol absorption son) (193) 294 -- by jejunum and ileum (Feldman, Ethidium bromide Henderson) (193) 221 Fluorescence changes of ——— on binding Clay particles to erythrocyte and mitochondrial mem-Orientation of — sorbed on bacteria branes (Gitler et al.) (193) 478 possessing different ionogenic surfaces Folic acid transport Characteristics of \_\_\_\_ in the L1210 (Marshall) (193) 472 leukemia cell (Lichtenstein et al.) (193) 456 Cytochrome c Impermeability of the outer mitochondrial Glucose binding membrane to ----. I. Studies on whole Studies on the organization of the brush mitochondria (Wojtczak, Załuska) (193) 64 border in intestinal epithelial cells. VI. — to isolated intestinal brush borders Cytochrome c Interaction between - and purified and their subfractions (Eichholz et al.) (193) phospholipids (Hart et al.) (193) 308 179 Cytoplasmic membrane Glucose-6-phosphatase Separation and properties of outer mem-Activation in vitro of ----, inorganic pyrophosphate-glucose phosphotransferase brane and —— in Escherichia coli (Miura, Mizushima) (193) 268 and related enzymes. Relationship to microsomal membrane structure (Stetten Digoxin binding Deoxycholate stimulation of goldfish inteset al.) (193) 260 tinal (sodium-potassium)-ATPase and its Illite and montmorillonite relation to — — (Ellory, Smith) (193) 137 Orientation of ——— sorbed on bacteria possessing different ionogenic surfaces (Marshall) (193) 472 Electron microscope study of the disruption of erythrocyte Inorganic pyrophosphate-glucose phosphomembranes (Haggis) (193) 237 Electron microscopy transferase Use of small angle X-ray diffraction to Activation in vitro of glucose-6-phospha-

| ship to microsomal membrane structure       | isolated from the first stellar nerves of the  |
|---------------------------------------------|------------------------------------------------|
| (Stetten et al.) (193) 260                  | squid Dosidicus gigas (Camejo et al.) (193)    |
| Insulin analogues                           | 247                                            |
| Effect of polypeptide hormones on lipid     | Membrane phospholipids                         |
| monolayers. II. The effect of ——, vaso-     | Participation of soluble liver proteins in the |
| pressin, oxytocin, thyrocalcitonin, adreno- | exchange of ——— (Wirtz, Zilversmit)            |
| corticotropin, and 3',5'-cyclic AMP on      | (193) 105                                      |
| calcium uptake by monomolecular films of    | Membrane reformation                           |
| monooctadecyl phosphate (Kafka, Pak)        | Selective reaggregation of solubilized myco-   |
| (193) 117                                   | plasma membrane proteins and the kinetics      |
| Ion exchange                                | of ——— (Razin et al.) (193) 277                |
| Chemistry of ——— in monomolecular           | Microsomal ATPase                              |
| layers of lipids (Santis, Rojas) (193) 319  | Effect of dehydration, starvation and so-      |
| Ion-selective properties                    | dium deprivation on — in the kidney            |
| of some lipoid systems and their            | (Gutman, Beyth) (193) 475                      |
| relation to biological membranes (Botré     | Microsomal membrane structure                  |
| et al.) (193) 333                           | Activation in vitro of glucose-6-phospha-      |
| Lipid bilayer membranes                     | tase, inorganic pyrophosphate-glucose          |
| Tetraphenylborate conductance through       | phosphotransferase and related enzymes.        |
| (Le Blanc, Jr.) (193) 350                   | Relationship to —— (Stetten et al.)            |
| Lipid films                                 | (193) 260                                      |
| Chemistry of ion exchange in monomolec-     | Mitochondria                                   |
| ular ——— (Santis, Rojas) (193) 319          | Osmotic nature of the ion-induced swelling     |
| Lipid monolayers                            | of rat-liver ——— (Rottenberg, Solomon)         |
| Effect of polypeptide hormones on ———.      | (193) 48                                       |
| III. The effect of insulin analogues, vaso- | Mitochondrial membranes                        |
| pressin, oxytocin, thyrocalcitonin, adreno- | Energy-dependent protein conformational        |
| corticotropin, and 3',5'-cyclic AMP on      | transitions in — (Graham, Wallach)             |
| calcium uptake by monomolecular films of    | (193) 225                                      |
| monooctadecyl phosphate (Kafka, Pak)        | Mitochondrial membrane                         |
| (193) 117                                   | Fluorescence changes of ethidium bromide       |
| Lipid-protein interaction                   | on binding to erythrocyte membrane and         |
| in monolayers. Effect of confor-            | ——— (Gitler et al.) (193) 478                  |
| mation of poly-L-lysine on stearic acid     | Mitochondrial membrane                         |
| monolayers (Shah) (193) 217                 | Impermeability of the outer ——— to             |
| Lipoid systems                              | cytochrome c. I. Studies on whole mito-        |
| Ion-selective properties of some ——— and    | chondria (Wojtczak, Załuska) (193) 64          |
| their relation to biological membranes      | Mitochondrial membrane                         |
| (Botré et al.) (193) 333                    | Protein turnover of the inner and outer        |
| Liposomes                                   | of rat liver (De Bernard et al.) (193)         |
| Potassium permeability of single compart-   | 58                                             |
| ment — with and without valinomycin         | Molecular orbital                              |
| (Johnson, Bangham) (193) 82                 | description of the partitioning of             |
| Membranes                                   | aromatic compounds between polar and           |
| Ion-selective properties of some lipoid     | nonpolar phases (Rogers, Cammarata) (193)      |
| systems and their relation to biological    | 22                                             |
| (Botré et al.) (193) 333                    | Monomolecular layers                           |
| Membranes                                   | Chemistry of ion exchange in —— of             |
| Use of small angle X-ray diffraction to     | lipids (Santis, Rojas) (193) 319               |
| investigate disordering of ———— during      | Montmorillonite and illite                     |
| preparation for electron microscopy. I.     | Orientation of ——— sorbed on bacteria          |
| Osminum tetroxide and potassium perman-     | possessing different ionogenic surfaces        |
| ganate (Moretz et al.) (193) 1              | (Marshall) (193) 472                           |
| Membranes                                   | Murein                                         |
| Use of small angles X-ray diffraction to    | Electron microscopic contrasting of ——         |
| investigate disordering of ——— during       | with uranyl and chromium salts (Heilmann,      |
| preparation for electron microscopy. II.    | Preusser) (193) 215                            |
| Aldehydes (Moretz et al.) (193) 12          | Mycoplasma membrane proteins                   |
| Membrane calcium                            | Selective reaggregation of solubilized ———     |
| Displacement of ——— by a local anaes-       | and the kinetics of membrane reformation       |
| thetic (chlorpromazine) (Kwant, Seeman)     | (Razin et al.) (193) 277                       |
| (103) 338                                   | Nitella translucens                            |

Nitella translucens

Electro-osmosis in Chara corallina and cells (Barry, Hope) (193) 124

SUBJECT INDEX


(193) 338

Membrane fractions

Characterization of two different ———

488 SUBJECT INDEX

| 5'-Nucleotidase                               | aminoisobutyric acid in Ehrlich ascites                                              |
|-----------------------------------------------|--------------------------------------------------------------------------------------|
| Enrichment of ——— in membrane frag-           | tumour cells (Jacquez, Schafer) (193) 368                                            |
| ments isolated from Acanthamoeba sp.          | Progesterone                                                                         |
| (Schultz, Thompson) (193) 203                 | Human erythrocyte membrane. Uptake of                                                |
| Outer membrane                                | ——— and chemical alterations (DeVenuto                                               |
| Separation and properties of ——— and          | et al.) (193) 36                                                                     |
| cytoplasmic membrane in Escherichia coli      | Proline transport                                                                    |
| (Miura, Mizushima) (193) 268                  | —— by Pseudomonas aeruginosa (Kay,                                                   |
| Oxytocin                                      | Gronlund) (193) 444                                                                  |
| Effect of polypeptide hormones on lipid       | Propionate                                                                           |
| monolayers. II. The effect of insulin ana-    | Effect of ——— and other organic anions                                               |
| logues, vasopressin, ——, thyrocalcitonin,     | on sodium transport across toad bladder                                              |
| adrenocorticotropin, and 3',5'-cyclic AMP     | (Singer et al.) (193) 430                                                            |
| on calcium uptake by monomolecular films      | Protein-lipid interaction                                                            |
| of monooctadecyl phosphate (Kafka, Pak)       | — in monolayers. Effect of conformation of                                           |
| (193) 117                                     | poly-L-lysyne on stearic acid monolayers                                             |
| Permeability                                  | (Shah) (193) 217                                                                     |
| Seasonal changes in the — of the              | Protein turnover                                                                     |
| isolated vesical epithelium of Testudo        | ——— of the inner and outer mitochondrial                                             |
| hermanni hermanni Gmelin (Gilles-Baillien)    | membrane of rat liver (De Bernard et al.)                                            |
| (193) 129                                     | (193) 58                                                                             |
| Phosphate transport                           | Sarcoplasmic reticulum fragments                                                     |
| in Bacillus cereus (Rosenberg et al.)         | Effect of diethyl ether and thymol on the                                            |
| (193) 159                                     | ultrastructural and biochemical properties                                           |
| Phospholipids                                 | of purified ——— from skeletal muscle                                                 |
| Interaction between cytochrome c and          | (Greaser et al.) (193) 73                                                            |
| purified — (Hart et al.) (193) 308            | Short-circuiting current                                                             |
| Phospholipid                                  | Acetazolamide-sensitive versus                                                       |
| Molecular structure in ———— essential to      | mucosal bicarbonate concentration in turtle                                          |
| activate sodium-potassium-magnesium-de-       | bladders (Gonzalez, Schilb) (193) 419                                                |
| pendent ATPase and potassium-magnesium-       | Sodium-potassium ATPase                                                              |
| dependent phosphatase of bovine cerebral      | Deoxycholate stimulation of goldfish intes-                                          |
| cortex (Tanaka, Sakamoto) (193) 384           | tinal ——— and its relation to digoxin                                                |
| Phospholipid membranes                        | binding (Ellory, Smith) (193) 137                                                    |
| Action of anaesthetics on ——— (Johnson,       | Sodium and potassium electrochemical poten-                                          |
| Bangham) (193) 92                             | tial                                                                                 |
| Plasma membrane                               | $-$ gradients and the transport of $\alpha$ -                                        |
| Gel filtration of marker enzymes of ———       | aminoisobutyric acid in Ehrlich ascites                                              |
| and endoplasmic reticulum from rat liver      | tumour cells (Jacquez, Schafer) (193) 368                                            |
| (Nakai et al.) (193) 468                      | Sodium-potassium-magnesium-dependent                                                 |
| Poly-L-lysine                                 | ATPase                                                                               |
| Protein-lipid interaction in monolayers.      | Molecular structure in phospholipid essential                                        |
| Effect of conformation of ——— on stearic      | to activate —— and potassium-magnesium-                                              |
| acid monolayers (Shah) (193) 217              | dependent phosphatase of bovine cerebral                                             |
| Polypeptide hormones                          | cortex (Tanaka, Sakamoto) (193) 384                                                  |
| Effect of — on lipid monolayers. II.          | Sodium transport                                                                     |
| The effect of insulin analogues, vasopressin, | Accelerating effect of serosal bicarbonate on                                        |
| oxytocin, thyrocalcitonin, adrenocortico-     | — in short-circuited turtle bladders                                                 |
| tropin, and 3',5'-cyclic AMP on calcium       | (Gonzalez et al.) (193) 403                                                          |
| uptake by monomolecular films of mono-        | Sodium transport                                                                     |
| octadecyl phosphate (Kafka, Pak) (193) 117    | $\alpha$ -Adrenergic inhibition of —: The                                            |
| Potassium-magnesium-dependent phosphatase     | interaction of vasopressin and cyclic AMP                                            |
| Molecular structure in phospholipid essen-    | (Watlington) (193) 394                                                               |
| tial to activate sodium-potassium-magne-      | Sodium transport                                                                     |
| sium-dependent ATPase and of                  | Effect of propionate and other organic                                               |
| bovine cerebral cortex (Tanaka, Sakamoto)     | anions on ——— across toad bladder                                                    |
| (193) 384                                     | (Singer et al.) (193) 430                                                            |
| Potassium permeability                        | Sodium transport                                                                     |
| of single compartment liposomes               | Features of amino acid structure enhancing                                           |
| with and without valinomycin (Johnson,        | or obstructing cosubstrate reactivity of                                             |
| Bangham) (193) 82                             | Christensen et al.) (193) 228                                                        |
| Potassium and sodium electrochemical poten-   | Squid                                                                                |
| tial                                          | Characterization of two different membrane fractions isolated from the first stellar |
| ——— gradients and the transport of $\alpha$ - | nactions isolated from the first stellar                                             |
|                                               |                                                                                      |

